If it's not what You are looking for type in the equation solver your own equation and let us solve it.
23x^2+144x-186=0
a = 23; b = 144; c = -186;
Δ = b2-4ac
Δ = 1442-4·23·(-186)
Δ = 37848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37848}=\sqrt{4*9462}=\sqrt{4}*\sqrt{9462}=2\sqrt{9462}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-2\sqrt{9462}}{2*23}=\frac{-144-2\sqrt{9462}}{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+2\sqrt{9462}}{2*23}=\frac{-144+2\sqrt{9462}}{46} $
| Y=2m-1 | | 2x+3=10x-67 | | 7(y-7)=2(3y+5)-59 | | x^2-40x+12=0 | | 3n-4n-4=-8 | | 3(x+4)-(2x+2)=9 | | n-4/3=4 | | x^2-49x+11=0 | | 3(2y-3)=5(y+2)-19 | | 14r+-10r-2=-10 | | -2x-11(x+1)=-4(3x+4) | | 20x-14x-2x+3x-3=18 | | -6x-28=2 | | 9x+11=1/5(5x=20) | | 10y+4y+6y=20 | | 8x+4(4-x)=2x-12 | | 63=1.8x+32 | | 1=a/3-1 | | 13(y-5)=3(4y+6)-83 | | 9(3x-1)-26x=6 | | r-8=24 | | -31-8y+12=-28y+80+9y | | -7n^2-48n+64=0 | | (24*40)+36x=1400 | | 10c+3c-12c=6 | | 8x+2=3x+36 | | 5c-3c+5=19 | | Y=x(120-x)-50x | | 6-4x=-x÷4 | | 11x-1-9x-4=5x | | 9e=-9 | | 20n+6n-23n=15 |